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ABSTRACT 

DERnrATION OF MAPPING FUNCTIONS 

FOR STAR-SHAPED REGIONS 

This report  presents a simple method of deriving approximate rrapping func- 
t ions in the form of low order polynomials, which conformally map an annular 
region  onto one whose inner and outer boundaries are star shaped and circular. 
The derivation is based on the Schwarz-Christoffel  transformation. 

I l lustrat ions are carried out i n  detail for a nmber of typical star-shaped 
regions. Some of the final resul ts  are presented by graphs, f'rcfn which one may 
r e a d i l y  derive a particular polynomial fo r  the approximate mpping of a certain 
class of star-shaped regions. 
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DERIVATION OF MAPPING FUNCTIONS FOR 

STAR-SHAPED REGIONS 

By Kwan Rim and Roger 0. Stafford 

Department of Mechanics & Hydraulics 
The University of Iowa 

Iowa City,  Iowa 

SUMMARY 

The purpose of t h i s  report is t o  present a simple mthod of  deriving the 
approximate mapping functions i n  the form of low order  polynomials, which trans- 
act the conformal mapping of  annular  regions  onto-those whose inner and outer 
boundaries are star-shaped and circular.  Since the entire  derivation is based 
on the well-known Schwarz-Christoffel  transformation, its application  to a 
practical  problem is simple and straight forward. Compared to   other  approximate 
methods of conformal mapping, the present method does provide simpler mapping 
functions; namely, polynomials with a smaller n h e r  of terms. 

I l lustrat ions are carried  out  in detail fo r  a number of typical star-shaped 
regions. Some of the final resul ts  are presented by graphs, from which  one may 
readily derive a particular polynomial fo r  the approximate mapping of a certain 
class of star-shaped regions. 

INTRODUCTION 

The main objective of t h i s  research  project is t o  perform the elastic and 
viscoelastic analysis  of two-dimensional problems with star-shaped boundaries 
by the method of complex variables. A successf'ul  application  of t h i s  method 
requires the derivation  of a mapping function which maps a given  region con- 
formally  onto a unit circle. Hence, the first phase of the research, covered 
by this First Interim Report, is devoted t o  the development of a simple method 
of deriving a satisfactory mapping function. 

Since the exact mapping functions are not  derivable fo r  many physical prob- 
lem, a practical alternative is t o  make use  of  an approximate mapping function 
which accomplishes the conformal mapping of a uni t   c i rc le  onto a region  reasonably 
congruent t o  a given starcshaped domain. The desirable characteristics of  such  an 
approximate mapping function are: the reasonable congruency of the mapped t o  the 
specified  region and the simplicity of the mapping function.  Since these two 
characteristics are usually  incompatible with each other, one has t o  seek a proper 
compromise f o r  a given problem. 



The significance of the congruency is self-evident and does not  require 
any further explanation. The simplicity is also very  important  because a 
complicated mapping function tends t o  diminish the mrits of analytic solu- 
tions. As the complexity.of an-analytic  solution  increases, so does the 
diff icul ty  i n  comprehending its physical  implications. It is also t o  be 
noted that the numerical answers provided by a complicated analytical solu- 
t ion may be obtained by sorne reliable numerical mthcds with less computa- 
t ional  effort .  

A compmhensive treatment  of approximate conformal.  mapping m y  be found 
in the book by Kantorovich and Krylov (ref . 1) . Numerous investigators (ref. 
2 and 3 ) ,  who have ut i l ized the various methods of approximate map?ing, have 
reported that a plynomiaJ. with a very large number of terms is required t o  
accomplish a satisfactory mapping of a star-shaped region. The nwnber of 
terms runs from several dozen t o  a few hundred. For example, Parr (ref. 3 )  
reported that a polynomial with f i f t y  terms w a s  required t o  achieve a satis- 
factory mapping of a f a i r l y  simple star. 

The authors have found that a proper  application of the well-known 
Schwarz-Christoffel t m n s f o m t i o n   t o  the star-shaped  regions  offers  several 
advantages. The f i rs t  advantage is that this method is simple and may be 
readily understood by an  average analyst. The coefricients of the power 
series are automatically determined and remain fixed, and they are related 
t o  the physical parameters which control the s ize  and s h p e  of a star. The 
secofid advantage is tnat it yields polynomials with a considerably less 
number of terns for   cer ta in  kinds of stars. This can be accomplished by 
examining the  congruency and truncating the series according t o  a desired 
accuracy. Another point  of great significance is that all the polynomials 
obtained  through  truncation do satisfy the condition of conformality  auto- 
mat ical ly  . 

Most of the other methods of  approximate  conformal mapping do not 
possess these pmperties. In many cases, the coefficients of a polynomial 
mapping function r u s t  be re-evaluated for  every new approximation ami some 
methods require one t o  start with a polynomial with an enormusly large 
rimer of ternas in order t o  ensure that the condition of conformality w i l l  
be satisfied. 

For a clear   i l lust rat ion of the method, a simple star with four  points 
is chosen and the procedure is carried out i n  detail. Although it is simple, 
it contains all the essential  features. Some of the f inal   resul ts  are pre- 
sented i n  graphical form, which will allow one t o   s e l e c t  the proper poly- 
nomial for  the approximate mpping  of a given class of stars. Besides t h i s  
example, a number of other stars have been investigated, and useful results 
are b r i e f l y  presented at the end. 
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SYMBOLS 

Ccmplex  numbers; i.e., z = x + i y  

Mapping f'unction 

Conjugates of complex  numbers; i. e. , z = x - i y  

Number of star points 

Indices 

Exterior  angle  of the j-th vertex  divided by n 

Degree of a star 

Images of vertices on the  unit circle  

Spacings of images on the unit   circle 

Polynomials  of 5 

- 

Distance between adjacent  vertices of a star 

DERIVATION OF MAPPING FUMCTIONS 

The conformal mapping of the exterior of a unit circle  onto ths  exterior 
of a closed polygon is accomplished by an application of the Schwarz-Christoffel 
transfGrmation and m y  be transacted by the following  general formula (ref. 4):  

h-~ which A is  a complex constant and K is related t o  the exterior  angle of 
the polygon at the vertex z by the factor of 1. The sum of a polygon's 
exterior angles being 2r, the sumnation  of K is always two. Refer t o  
figure 1 for  other details. 

j 
3 

j 

The applicability of the Schwarz-Christoffel t r ans fomt ion  is supported 
by the fact  that any geometric figure may be closely approximated by a polygon 
and that the symnetric nature of a star-shaped region grea t ly  simplifies the 
final form of the mapping function. Hence, the use of this method involves  an 
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I Z m 

Unit c i rc le  on <-plane Polygon on z-plane 

Figure  1,”apping of the exterior of a unit c i r c l e  onto the exterior of a 
polygon. 

approximation  of an actually  specified  region by a polygon. The approximating 
polygon is then mapped onto a unit c i rc le  by the well-established method of the 
Schwarz-Christoffel  transformation. The details of t h i s  procedure and the re- 
duction of the general mapping f o m l a  will be shown in the derivation of the 
mapping ftmction f o r  a specific example. 

Consider a group of stars which may be well approximated by the type  of 
polygon shown i n  figure 2. The mapping function  for th i s  kind of polygon is 
sufficiently simple so as t o  f a c i l i t a t e  a lucid  i l lustrat ion of the method, 
yet it retains  the basic  characteristics  of a general polygon. The i l lustra-  
t ion  will be carried  out i n  such a way that one will be able to  derive an 
approximate mapping f’unction fo r  an arbi t rary star. For brevity, the word 
“star” will be used i n  place of ?star-shaped polygon.” 

Proper substitution and regrouping  of terms in equation (1) reduces the 
mapping f’unction t o  
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U n i t  c i rc le  on  t-,-plane Star-shaped polygon on 2-plane 

In which a . . f are defined by 
j '  bJ' j 

i* 0 iy 1 i h  i(m - Y 2 ) ,  
2n  

a l = e  , b l = e  , c1 = eiy2, d, = e , el = e 

f l  = e i(% - Y l ) ;  

and by the general  relationship 

Intermediate steps of  derivation are relatively simple; therefore, they are 
omitted for   the sake of concise  presentation. 
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It can be shown that 

Then by observing that am and dm correspond t o  the m-th roots of +1 
and -1 respectively,  equation (2) reduces t o  

and f i n a l l y  t o  

This integral, equation ( 3 ) ,  cannot be evaluated in terms  of elemntary 
functions. But a solution  in the form of a power series can be obtained by 
expanding the integrand  into a power series and i n t e s a t i n g  it term by term. 
Expansion of the integrand is carried out by performing the binomial expan- 
sion of each parenthesized  quantity and then forming the product of all the 
series. A general series associated with the j-th vertex can be developed 
by expanding the quantity 

i n  the following manner: 
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Hence 

where the cdefficients Ck are defined by 

k 

K ( K  - 1) 
C2(yj, K j >  = j 2 cos ( 2 m Y  ) + Kj Kj  , 

21 J 

+ A  j j 
K K ( K  - 1)(K. - 2)  
11 31 2 cos (2mY ) + 

j 

Since the following  binomial expansions 

-K 
(1 + em) = 1 - Kc + m K(K + 1) <2m K(K + 1)(K + 2)  e3m + 

21 
- 

31 0 . .  , 
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which  becomes 
. l / S  

In equation (6), n is the number of vertices between two adjacent  lines of 
symnetry , and the series Dkch is the final product of the series i n  the 
integrand of equation (5). By integrating the  series term by term, one ob- 
ta ins  the mapping function  for the type  of star shown i n  figure 2 i n  the 
following form: 

Since the use of such a mapping function expressed i n  an in f in i te  series is 
prohibitive, a polyndal mapping flulction which is derived by truncating 
the inf ini te   ser ies  is used in  a practical  application. 

The behavior of the mapping function defined by equation (7) is controlled 
by three types of parameters. They are the normalizing  coefficient a ,  the 
vertex angles ( K 1  and K,), and the spacing of the images of vertices on the 
unit circle  (Y and y,) . In order to  describe the behavior of the mapping 
m c t i o n ,  the role of  each  type  of  parameter will be discussed i n  the following 
pages 

The mapping functions  for  other types of stars, such as shown i n  figure 3, 
can be derived  in a similar manner as equation (7) w a s  obtained.  Therefore, no 
further elaboration will be made on other  types of stars, except for  brief 
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graphical presentations  of  interesting mappings obtained  for such stars. See 
the figures presented at the end of the report. 

( C >  

Figure 3.- Segments of various  four-pointed stars. 

PARMEEXS CONFROLTJNG THE SIZE AND SHAPE 

The normalizing  coefficient a is determined in  such a way that the 
distance fmm the center   to  the ou te r   t i p  of a star is a un i ty  and that one 
of the star's m j o r  axes of syrrPnetry is oriented  along the x-axis. It is 
readi ly  evaluated by letting z = 1 be the image of 5 = 1; i.e. 

Dk l = a  . 
k=O 1 - km 

As a convenient means of classifying  various stars, the term "degree" 
w i l l  be used hereafter. The degree of a star corresponds t o  the rimer Of 
vertices counted between any two adjacent axes  of symnetry, excluding the 
ones located on the axes. An m-pointed star possesses 2m axes of syrrmetry 
and an n-th d e w e  star has (n + 1) straight sides between adjacent  axes 
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of symnetry. For instance, the four-pointed star shown i n  figure 2 is a second 
degree star and has three straight line seglnents between adjacent axes of sym- 
metry; namly, S,, S, and S , .  It has of course eight axes  of symnetry. 

The shape  of a star is determined by its exterior  vertex angles and the 
relative dinsensions of its sides. Except for  the case  of a zero degree star, 
the angles done  are not  sufficient  to  describe the configuration of a star. 
In general the angles are specified i n  terms of K and the relative dimen- 
sions of the sides are controlled by Y -the position of the  vertex images 
on the unit circle.  

j 
j 

Due t o  its s-tric property, a star can be uniquely  defined by specifying 
its configuration  only i n  a sector bounded by two adjacent  axes of symmetry. 
The angle between adjacent  axes of syrrPnetry is n/m radians and it is preserved 
i n  the course  of the conformal transformation.  Therefore the mapping function 
for  an n-th degree star is  a m c t i o n  of only K and Yj ( j  = 1, 2, . . . , n) 
determined from the small sector of the star. It is due to  th i s  fact  that the 
form of the general mapping formula is greatly simplified i n  the case  of a star, 
as it has been illustrated i n  the preceding  derivation. 

j 

The  number 
that is, for  an 
there are (n + 
served that Sk 
relationship: 

of independent side dimensions % equals the degree of a star; 
n-th degree star only  n  of Sk are independent, even though 
1) of Sk between adjacent  axes of symnetry . It has been ob- 
may be approximately  expressed in terms  of Y by the following 

j 

1L 'k 
'k 'L 

, k = 1, 2, ... n. 
k-1 (i- Yj) 
j =1 

It is very l i t t l e  affected by Y i f  j > k. For any particular  type  of a 
star, a rmre exact  relationship between % and Yj ( j  = 1, 2, . . ., n) can 
be mde available in the form of graphs. These graphs w i l l  allow one t o  
determine Yk i n  an expedient manner for  a high degree of xcuracy. As an 
example, these  graphical  relations  for a second-degree star are presented in  
Appendix A, together with an explanation of the usage. 

j 

EFFECT OF TRUNCATION 

The general mapping formula for  a polygon with k vertices is expressible 
i n  the following form: 
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i n  which the j-th binomial i s  associated with the j-th vertex and in   fac t  
it plays  tne major role of controlling the mapping i n  the  vicinity of that 
vertex. This m y  be readily  seen f r o m  an  inspection of the derivative of the 

The argument of the derivative is the sum of the arguments of the individual 
terms ; 

If we l e t  5 vary from 5 - E t o  c j  + E, (1 c j c k,  E cc  1); then the 
magnitude of the change i n  the argument of the j-th binomial ( 5 - 5,) j K j 

J 
is K II , while that of any other binomial is less than K l l n ~ ,  ( a  f j ) . 

j 

The polynomial for  the j-th binomial ( 5  - c j  lKj , which is obtained 
by expanding (5 - 5 j into a truncated power series, is evidently a very 
rapidly varying f h c t i o n  in the vicinity of the j-th vertex. CXI the other 
hand, the polynomials  corresponding t o  the other binomials are a l l  slowly 
varying  functions i n  the s a  vicinity.  Therefore, the accuracy  of mapping 
i n  the vicinity of the j-th vertex depends primarily on the number of  terms 
retained  in the polynomial for  (5 - 5 )Kj , and very l i t t l e  on the other 
polynomials. The mre terms retained  in a particular polynomial, the more 
accurate the mapping of the corresponding  vertex  region becomes.  Hence, 
with regard to  the effect of truncating the power series for  the j-th 
binomial, the following remark is i n  order: 

K 
j 

j 

R e m k  I: Mapping of the vicinity of the j-th vertex is primarily  controlled 
by the j-th binamial; hence the accuracy  of the mapping f h c t i o n  
i n  that vicinity depends on the accuracy (the extent of truncation) 
of the corresponding  polynomial, e.g., equation ( 4 ) .  

The exact number of terms t o  be retained i n  a specific polynomial 
F( 5, Y K ) depends upon the accuracy desired at the j-th vertex and the 
configuration of the star. This is determined in a practical problem through 
a tr ial  and error method.  However, it has been observed that the polynomial 
for a vertex with a positive  exterior angle is  mre rapidly converging  than 
that fo r  a vertex with a negative  exterior angle. For the same accuracy  of 
mapping, therefore, fewer terms are required in the former  polynomial than 
i n  the latter. The positive  exterior angle is measured in  a counter-clockwise 
direction. 

An inspection  of the typical series for  each case will clearly illustrate 
t h i s  fact. For  each case,  consider the following typical series: 

j '  j 
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The ra t io  of the successive terms of each series is given by 

c = m  n - K  (for  the vertex with a positive  exterior angle), 

and R;; , n + K  - n i i  (for  the  vertex with a negative  exterior angle) 

This ra t io  being a measure of the rate of  convergence, we can conclude from 

that series (11) converges faster than series (12). Hence, the following con- 
cluding remark is i n  order: 

Remark 11: For the same accuracy  of mapping, the polynomial f o r  a vertex with 
a positive  exterior angle requires a lesser number of terms than 
the polynomial for  a vertex with a negative  exterior  angle. 

The geometrical  slgnificance  of  truncation is that of mapping a fim nearly 
congruent t o  the prescribed polygon but with rounded corners. In the case of 
a star, it is observed that the polynomial mapping function maps a unit   circle 
onto a so-called  curvilinear polygon. 

CONSTRUCTION OF MAPPING FUNCTIONS 

A general method of  constructing a mapping function  for a simple star 
w i l l  be first described. Then it will be shown  how this  method may be simply 
extended t o  the case of a doubly connected star. The mapping of a simple star 
is t o  be understood as the conformal mapping of the exterior  of the unit   circle 
t o  the exterior of a star, and that of a doubly connected star as the conform1 
transformation  of an annular region  onto a domain  whose inner and outer bound- 
aries are star-shaped and circular. 

Starting with two sets of known data (K and S ) which are prescribed J J 
for any given star, the construction  of an approximate mpping  function for 
a simple star is carried  out by the following  steps: 

1. Estimate the image spacing Y f r o m  the given side dimensions S J J '  

3. Truncate the polynomials according t o  the accuracy of mapping desired 
at each vertex. 
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4. Multiply the polynomials together, Integrate the product and then 
norrralize the resulting mapping f’unction. 

5. Plot the mapped star and refine the congruency as needed, by modifying 
the spacing of vertex intages andlor  varying the number of terms In the 
polynomials. 

Sane of the steps (i.e. steps 1, 2, and 4)  have been already explained i n  
fill detail. The third step must be accomplished by a trial and error method, 
which is greatly fac i l i t a ted  by the two u s e m  remarks previously stated in 
connection with the effect  of  truncation. In fact ,   for  the second degree 
stars upper  and lower bounds  on the number of t e r n  have  been established. 
For the makimm e m r  of 5% in the dimensions  of S the polynomlal fo r  the 
vertex with a positive  exterior angle requires only 4 t o  10 terms, and that 
with a negative angle 5 t o  25 terms. That this  method does provide a simpler 
mapping function for a certain  class of stars is demonstrated in figure 17; 
the mapping of a fairly deep star is accomplished by a 12-tern polynomial. 

3, 

The second degree star shown In figure 2 w a s  examined In detail with 
the aid of a digital computer. Accurate relationships between Y and S 
were completely established and are presented by graphs in Appendix A. A 
working FORTRAN program for  the IBM 7040 is now available which automatically 
generates a mapping fbnction and plots the mapped star. This pmgram auto- 
mt i ca l ly  determines the coefficients of the polynomials F(s; YJ, Kj) for 
each vertex from the Input data of K and Yj , truncates the polynomials 
after the prescribed number of terms, produces a mapping function by the 
step nwnber 4 and plots the mapped star. It takes less than twenty  seconds 
of computing time to  construct and plot a mapping ?hnction In th i s  m e r .  
Examples of mapped stars, from second to   fourth degree, are also presented 
i n  Appendix B. 

J 

The polynomial mapplng M c t i o n   f o r  a simple star may also be used for  
the mapping of a doubly connected star since the f h c t i o n  

m 1-km 

k=O 

reduces t o  the following  equation fo r  5 >> 1; 

This shows that a c i rc le  In s-plane whose radius is considerably greater than 
one is mapped onto a figure In 2-plane which is nearly equal t o  a circle  with 
an  approximate radius of E, I s I . For a second-degree star with four points , 
the image of I s I = 2 is found t o  vary from a c i rc le  by not more than 2%. 
For practical  purposes,  equation (13) performs a satisfactory mapping of  doubly 
connected stars. 
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CONCLUDING REMARKS 

The success of complex variable methods in  e l a s t i c i ty  hinges upon the 
ava i l ab i l i t y  and simplicity of a mapping functim. Previous investigators 
(ref . 2 and 3) have derived mapping functions by approximate methods involv- 
ing some variation of the collocation  technique. However, these approaches 
require very extensive computations and usually  yield  very lengthy polynomial 
mapping functions 0 

Present  investigation has attacked the specific pmblem of mapping a 
unit   circle  onto a star-shaped region by the Schwarz-Christoffel transform- 
tion. By capitalizing on the high degree  of symnetry of star-shaped polygons, 
a generalized method w a s  developed which y ie lds  directly the desired mapping 
function. Som caparisons have shown that equivalent polynomial mapping 
functions may be generated with less than one-fourth the number of terms 
required by the collocation  technique. 

This new method has two drawbacks, the most important being that fo r  
higher  degree stars not  covered by the figures i n  Appendix A a high speed 
digital computer is a prerequisite  to the developmnt  of  satisfactory mapping 
functions. The second res t r ic t ion  is that the graphical  presentation of the 
relations between yk and Sk fo r  th i rd  and higher  degree stars becomes 
extremely d i f f icu l t  except for  specific  cases. However, excellent first 
approximation to   t he  yk can be obtained f r o m  the figures  presented in 
Appendix A, and accurate maps of scme f i f t h  degree stars have been developed 
without extra effor t  . 

In  general, the Schwa-Christoffel method developed herein does provide 
a simpler mapping function  for that class of stars which can be approximated 
by polygons, and it offers some unique advantages. Some of these are: unique 
and automatic  determination  of the coefficients of a polynomial from three 
geometric parameters, automatic satisfaction of the conformality  condition, 
and the fac t  that the  variables have simple geometric interpretations. 

Perhaps the chief advantage is that th i s  method w i l l  provide the simplest 
possible polynanial mapping function, as one may e a s i l y  truncate the polynomial 
t o  the lowest number of t e r n  that w i l l  accomplish the desired transformation. 
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APPENDIX A. ANALYSIS OF SECOND-DEGREE STARS 

A detailed analysis was performed on a second-degree star with KO = K, = 0 ,  

see figure 2. This star has four independent parameters : the number of star 
points, m; the angle K, (note that K, = l/m - K,);  and the relat ive side 
dimensions S, and S , .  The mapping function is given by equation ( 5 ) ;  

?he purpose of t h i s  analysis w a s  twofold: (a) To determine the relation- 
U 

ships between the relative d-nsions % and the vertex image spacings yk 

in terms  of Y m and K,; (b) To determine the effects  on congruency of 
truncating the polynomial F( 5 ,  Y K ) i n  order t o  establish limits of 
truncation. A program fo r  the I B M  7040 computer was developed t o  perform 
these tasks, and the results are shown i n  the following figures and a table. 

J '  
3' 3 

The graphs are plots of Sk versus Yk for  different  values of m and 
K,,  and table 1 contains the limits of  truncation. The dimnsionless parameter 

is defined as the distance between the (k - 1)-th and k-th vertices 
divided by the distance (see figure 2). hly the usage of the graphs 
will be outlined here; that is, how t o  determine Y, and y2 f r o m  the given 
data m, K1, S, and S,. The procedure may be broken down into the follow- 
ing steps. 

(1) From the given  values  of m and K,,  select the appropriate pair 
( S ,  and S,) of graphs. The angles need not agree exactly, but 
select graphs whose K, is nearest the given angle. 

Since S, is nearly independent of Y,, the following procedure w i l l  

quickly yield the correct image spacings, Y1 and Y,. 

(2) From the graph of S,  versus Y,/(n/m), find the maxinaun and minimum 

values of y1 fo r  the given S, and calculate the average  value. 

(3 )  On the graph of S ,  versus (Y2 - Y,)/(n/m - Y,), mve  along the 
appropriate Y,/(+/m) = constant line t o  the specified S, value, 
and read off the corresponding  value  of ( y, - y , )/( +/m - y , ) . 

( 4 )  On the graph used i n  the step (21, find a corrected  value  of Y , 
by moving along the l i ne  (Y, - Y1 )/(+/m - Y , )  = constant (which 
w a s  found i n  step 3) t o  the specified S, value, and read off a 
new value  of Y , . 
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These charts are very  dependent on the rimer of star points, m, as an 
increase i n  m will primarily  cause a significant  decrease in  the average 
slope  of the curves. Also these curves are not  independent  of K,, but the 
variation of K, w i l l  have a small effect on Sk. It has been observed that. 
f o r  a particular S, and S,, a 24% increase in K, w i l l  cause an  8% increase 
i n  y,/(n/m) and an 8% decrease i n  (Y, - y,)/(*/m - Y,). 

No. of F(S, Y1,  K,) F k ,  Y,, K2> 

star Points No. of Terms s2 No. of Terms Sl 

4 s, 03 3 S, c .25 6 
.25 c S, c .5 8 .3 < S, c .6 4 

6 s, 01 

13 04 s, 07 5 .1 c s, c 03 
8 s, c 04 4 s, 01 

6 s, c 03 3 
.15 c S ,  c .4 9 .3  < s, < .7 4 

8 

Table l.-Trmcation limits of second demee stars f o r  a maximum error  of 
5% in Sk. 

The following two pages show four examples of the effect  of  truncation. 
The first three p lo ts   i l lus t ra te  that a polynomial with a very low number of 
terms can y ie ld  a mapping with congruency. The fourth plot shows that trunca- 
t ion   to  two terms will cause a smoth rounding of a vertex. 

16 



. . . .. .. " 

Figure 4.- An 8-point star mapped by a l3-tem polynomial. 

F i w e  5.- A 6-point star mapped by a 12-term polynomial. 
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Figure 6.- A 4-point star mpped by a 5-term polynomial. 
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Figure 7.- A 4-point star mapped by a 12-term polynomial. 
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Figure 8.- S, versus Y , / ( d m )  for  (Y2  - Y , ) / ( d r n  - Y, )  = constant. 
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e 4  

.3 

s2 
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.1 .2 .3  .4 .5 .6 .7 .8 

(y2  - y,)/(n/m - Y1) 
Figure 9.- S2 versus (y, - yl)/(n/m - Y,) for Y l / ( d r n )  = constant. 
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.2 .3 .5 .6 

Figure 10.- S, versus yl/(s/m) for ( y p  - Y,)/(a/m - Y 1 )  = constant. 
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.1 .2 . 3  .4 .5 .6 .7 .8 

(y2 - v,)/(n/m - yl> 

Figure 11.- S2 versus - yl)/(n/m - Y ) for yl/(n/m) = constant. 
(y2  
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Figure 12.- S, versus Y,/(n/m) for (Y2 - Y,)/(n/m - Y1) = constant. 



.1 .2 .3 .4 .5 .6 .7 .8 

(y2 - y,)/(a/m - yl> 

Figure 13.- S versus ( Y 2  - Y,)/(n/m - Y 1 )  for  Y,/(r/m) = constant. 
2 
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Figure 14.- S, versus Y,/(n/m) for (Y2 - Y,)/(n/m - Y,) = constant. 
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Figure 15.- S2 Versus ( Y 2  - Y,)/(n/m - Y , )  for Y,/(n/m) = constant. 
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Figure 16.- S ,  Versus y,/(n/m) for (Y, - Y , > / ( d m  - Y1> = constant. 



.1 .2 -3 a 4  05 .6 .7 .8 

(Y, - y1 >/(n/m - y l >  
Figure 17.- S, Versus (Y, - Y,)/(n/m - y l >  for Y,/(n/m) = constant. 
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APPENDIX B. EXAMPLES OF VARIOUS STARS MAPPED BY EQUATION (5) 

The following plots are included t o   i l l u s t r a t e  the type and variety of 
maps which can' be simply obtained from equation (5). Each example was con- 
structed by following the algorithm  presented i n  the  section of ''CONSTRUCTION 
OF MAPPING FUNCTIONS . " 

These plots were made on an -&I paper printer with a capacity of six 
characters  per  inch  vertically and ten  characters per inch  horizontally. 
Thus each point (asterisk) may be in  e m r  by + 1/12'' vertically and 
+ 1/20" horizontally, making these plots somewh& crude i n  places. Hence 
These plots  should  not be used t o  examine the mapping near  vertices,  but 
they will give  qualitative infoqnation on the degree of congruency of the 

-... U................ 

1 _. - .. " . . . . - - .. ". - - " 
I 
L . ." . .  

- -. .. 
- -  " " .. " 

1 

" A". " 

Figure 18.- A 4-point  second degree star. 
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Figure 19.- A 4-point second degree star. 
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Figure 20 .- A 4 - p i n t  second degree star. 
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Figure 23.- An 8-point second degree star. 
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Figure 24-.- A 4-point fourth degree star. 
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Figure 25.- A 4-point second degree star. 
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